New complex-valued activation functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-valued Neural Networks with Non-parametric Activation Functions

Complex-valued neural networks (CVNNs) are a powerful modeling tool for domains where data can be naturally interpreted in terms of complex numbers. However, several analytical properties of the complex domain (e.g., holomorphicity) make the design of CVNNs a more challenging task than their real counterpart. In this paper, we consider the problem of flexible activation functions (AFs) in the c...

متن کامل

Complex Valued Functions Space

We adopt the following convention: x1, x2, z are sets, A is a non empty set, and f , g, h are elements of CA. Let us consider A. The functor +CA yielding a binary operation on CA is defined by: (Def. 1) For all elements f , g of CA holds +CA(f, g) = (+C)◦(f, g). Let us consider A. The functor ·CA yielding a binary operation on CA is defined as follows: (Def. 2) For all elements f , g of CA hold...

متن کامل

Valence of Complex-valued Planar Harmonic Functions

The valence of a function f at a point w is the number of distinct, finite solutions to f(z) = w. Let f be a complex-valued harmonic function in an open set R ⊆ C. Let S denote the critical set of f and C(f) the global cluster set of f . We show that f(S)∪C(f) partitions the complex plane into regions of constant valence. We give some conditions such that f(S) ∪ C(f) has empty interior. We also...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: An International Journal of Optimization and Control: Theories & Applications (IJOCTA)

سال: 2020

ISSN: 2146-5703,2146-0957

DOI: 10.11121/ijocta.01.2020.00756